[52] L. R. Castilho and R. A. Medronho, “Cell retention devices for suspended-cell perfusion

cultures,” (in eng), Adv. Biochem. Eng./Biotechnol., vol. 74, pp. 129–169, 2002.

[53] S. M. Woodside, B. D. Bowen, and J. M. Piret, “Mammalian cell retention devices

for stirred perfusion bioreactors,” (in eng), Cytotechnology, vol. 28, no. 1–3,

pp. 163–175, Nov. 1998.

[54] O. W. Merten, J. V. Kierulff, N. Castignolles, and P. Perrin, “Evaluation of the new

serum-free medium (MDSS2) for the production of different biologicals: use of

various cell lines,” (in eng), Cytotechnology, vol. 14, no. 1, pp. 47–59, 1994.

[55] M. Leong, W. Babbitt, and G. Vyas, “A hollow-fiber bioreactor for expanding HIV-

1 in human lymphocytes used in preparing an inactivated vaccine candidate,”

(in eng), Biologicals, vol. 35, no. 4, pp. 227–233, Oct. 2007.

[56] B. Sun et al., “Production of influenza H1N1 vaccine from MDCK cells using a

novel disposable packed-bed bioreactor,” (in eng), Appl Microbiol. Biotechnol.,

vol. 97, no. 3, pp. 1063–1070, Feb. 2013.

[57] S. Kiesslich, J. P. Vila-Chã Losa, J. F. Gélinas, and A. A. Kamen, “Serum-free

production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-

X™ hydro fixed-bed,” (in eng), J. Biotechnol., vol. 310, pp. 32–39, Feb. 2020.

[58] H. P. Lesch et al., “Process Development of Adenoviral Vector Production in Fixed

Bed Bioreactor: From Bench to Commercial Scale,” (in eng), Hum. Gene Ther., vol.

26, no. 8, pp. 560–571, Aug. 2015.

[59] R. Rajendran et al., “Assessment of packed bed bioreactor systems in the production

of viral vaccines,” (in eng), AMB Express, vol. 4, p. 25, 2014.

[60] V. Cortin, J. Thibault, D. Jacob, and A. Garnier, “High-Titer Adenovirus Vector

Production in 293S Cell Perfusion Culture,” Biotechnology Progress, vol. 20, no. 3,

pp. 858–863, 2004. 10.1021/bp034237l

[61] Y. Wu, T. Bissinger, Y. Genzel, X. Liu, U. Reichl, and W.-S. Tan, “High cell density

perfusion process for high yield of influenza A virus production using MDCK sus-

pension cells,” Appl. Microbiol. Biotechnol., vol. 105, no. 4, pp. 1421–1434, 2021.

[62] J. Coronel, G. Gränicher, V. Sandig, T. Noll, Y. Genzel, and U. Reichl, “Application

of an inclined settler for cell culture-based influenza A virus production in perfusion

mode,” (in eng), Front. Bioeng. Biotechnol., vol. 8, p. 672, 2020.

[63] H.-J. Henzler, “Kontinuierliche Fermentation mit tierischen Zellen. Teil 2.

Techniken und Methoden der Zellrückhaltung,” Chemie Ingenieur Technik, vol. 84,

no. 9, pp. 1482–1496, 2012.

[64] P. Himmelfarb, P. S. Thayer, and H. E. Martin, “Spin filter culture: the propagation

of mammalian cells in suspension,” (in eng), Science (New York, N.Y.), vol. 164,

no. 3879, pp. 555–557, May 1969.

[65] A. Nikolay, Intensified Yellow Fever and Zika Virus Production in Animal Cell

Culture, 2020.

[66] L. R. Esclade, S. Carrel, and P. Péringer, “Influence of the screen material on the

fouling of spin filters,” (in eng), Biotechnol. Bioeng., vol. 38, no. 2, pp. 159–168,

Jun. 1991.

[67] Y. M. Deo, M. D. Mahadevan, and R. Fuchs, “Practical considerations in operation

and scale-up of spin-filter based bioreactors for monoclonal antibody production,”

(in eng), Biotechnol. Prog., vol. 12, no. 1, pp. 57–64, Jan-Feb. 1996.

[68] B. Maiorella, G. Dorin, A. Carion, and D. Harano, “Crossflow microfiltration of

animal cells,” Biotechnol. Bioeng., vol. 37, no. 2, pp. 121–126, 1991.

[69] R. van Reis, L. C. Leonard, C. C. Hsu, and S. E. Builder, “Industrial scale harvest of

proteins from mammalian cell culture by tangential flow filtration,” Biotechnol.

Bioeng., vol. 38, no. 4, pp. 413–422, 1991.

170

Bioprocessing of Viral Vaccines